Explainable AI-Powered Personal Finance App
Mr. Nicket Shah
Department of Polytechnic
MIT – World Peace University
Pune, India
nicket.shah@mitwpu.edu.in
Mr. Lokesh Gaiki
Department of Polytechnic
MIT – World Peace University
Pune, India
lokesh.gaiki@mitwpu.edu.in
Mr. Harsh Gidwani
Department of Polytechnic
MIT – World Peace University
Pune, India
harsh.gidwani@mitwpu.edu.in
Mr. Lavya Chauhan
Department of Polytechnic
MIT – World Peace University
Pune, India
lavya.chauhan@mitwpu.edu.in

Abstract—Management of personal finances has become rather complicated due to multiple income streams and spending options, and dynamic financial goals [3]. Several individuals, especially the youth, struggle to maintain a clear picture of the flow of their money. Traditional tools such as spreadsheets and budgets provide limited, static support, that do not adapt to the user’s financial state. The development of artificial intelligence in the financial field has transformed the way individuals and companies approach budgeting and financial planning [1]. Through the use of machine learning, predictive modeling, and natural language processing, AI systems can analyze spending habits and provide insights. This project focuses on the development of an AI-assisted financial app with explainable capabilities, which aims to help users gain more control over their spending and make more informed decisions through recommendations and predictive analysis. Explainable AI is employed to make the recommendation process transparent and interpretable to users.
Keywords—Explainable AI, Financial App, Finance Management, Budgeting, Artificial Intelligence, Machine Learning, Predictive Modeling
I. Introduction
Managing personal finances today is not as simple as it used to be. People have multiple ways of earning and spending money, such as online payments, subscriptions, digital wallets, and irregular income sources. Because of this, many individuals find it difficult to keep track of their expenses and understand where their money is actually going. Most people either forget to note their expenses or stop budgeting after some time because it feels boring and time-consuming.

Existing budgeting methods like spreadsheets or basic finance apps mostly depend on manual input and only show past transactions. They do not give proper guidance on how to improve spending habits or plan for the future. As a result, users are aware of their expenses but still struggle to save money or achieve financial goals.

Artificial Intelligence (AI) provides a better solution to this problem. AI can study a user’s spending behavior, find patterns, and give useful insights automatically. Instead of just recording expenses, AI-based systems can suggest better budgeting strategies and help users make smarter financial decisions. By using machine learning and data analysis, financial planning becomes more automated and personalized.

This project focuses on developing an Explainable AI-powered personal finance application that helps users manage their expenses in a smarter way. The system automatically tracks and categorizes expenses such as food, transport, bills, and entertainment. It also provides clear visual reports so users can easily understand their spending patterns. Based on the data, the application suggests how users can control unnecessary expenses while still meeting their savings goals.
II. Motivation and Need

A. Need
Financial management is an important skill, especially for students, young professionals, and small business owners. However, many people lack proper financial planning tools and guidance. Although several finance apps are available, most of them only show expense history and basic charts. They do not help users predict future expenses or adjust budgets when income or spending patterns change.
Because of this limitation, users often fail to follow a proper budget. Irregular income, unexpected expenses, and lack of personalized advice lead to overspending and poor savings habits. Traditional budgeting apps do not adapt to user behavior, which reduces their long-term usefulness.
B. Motivation
The motivation behind this project is to overcome these limitations by using Artificial Intelligence. An AI-assisted budgeting system can automatically analyze user data, predict future expenses, and provide personalized recommendations. Instead of static reports, users receive dynamic insights that change according to their spending behavior.

By integrating machine learning and an interactive chatbot, the proposed system makes budgeting easier and more engaging. It helps users understand their financial habits, control unnecessary expenses, and plan better for the future. This project aims to bridge the gap between basic expense tracking tools and intelligent financial guidance systems, making personal finance management more effective and user-friendly.
III. Literature Survey
A. Existing Research and Technologies
	Sr. No
	Research Concept
	Description

	1)
	AI-Based Expense Forecasting for Personal Budgeting [1]:

	An AI-driven budgeting system employs LSTM networks to forecast future expenses and analyze user spending behavior, enabling data-driven financial planning through predictive modeling.

	2)
	Natural Language–Based Financial Interaction [2]:

	The use of large language models allows users to interact with financial systems conversationally, enhancing accessibility and personalized guidance.

	3)
	Survey of Machine Learning in Financial Risk Management [7]:

	A comprehensive survey evaluates ML techniques such as SVM, Decision Trees, and Random Forests in financial analytics, establishing a methodological foundation for AI-driven financial systems.

	4)
	Visualization-Oriented Financial Insights [1]:

	The system integrates visual analytics to present spending trends and budget allocations, improving user awareness and interpretability of financial data.

	5)
	ML-Driven Spending Pattern Analysis [4]:

	The system uses regression and clustering methods to identify spending trends and assist users in maintaining financial discipline through continuous analysis.

	6)
	AI for Financial Decision Support and Policy Awareness [6]:

	AI-assisted frameworks analyze financial data using data mining and evaluation models to support decision-making and provide insights into regulatory and operational considerations.

	7)
	Adaptive Financial Insight Generation [3]:

	The system dynamically analyzes user data to generate personalized financial insights, supporting long-term budgeting and savings planning.

	8)
	Real-Time Expense Tracking Using Machine Learning [4]:

	A web-based expense tracker applies machine learning techniques to classify and predict expenses, enabling immediate feedback on user spending behavior.

	9)
	End-to-End AI-Based Personal Finance Management Platforms [3]:

	An AI-based finance management system integrates transaction tracking, categorization, and adaptive analytics using Python, TensorFlow, and MySQL for real-time financial monitoring.

B. Research Gap
· Lack of Explainability: AI systems, particularly deep learning models like neural networks, are complicated to understand, leading to reduced trust from users.
· Data Quality Issues: Poor quality data or biased data can lead models to produce faulty, skewed, and inaccurate financial predictions on future trends.
· Data Privacy and Security: Not many papers cover the security side of financial management accounting for the use of AI. Since financial data is sensitive information, the lack of strong frameworks for responsible AI usage remains a major issue.

IV. System Architecture
A. Tech Stack
Frontend

· React 18.2 with TypeScript

· Redux Toolkit and React Query

· Tailwind CSS and Material-UI

· Chart.js

· Vite

· Workbox (PWA)

Backend

· Node.js 18.x

· Express.js with TypeScript

· JWT and Passport.js

· Joi and express-validator

· Multer and Cloudinary
Database and Storage

· MongoDB Atlas

· Redis

· AWS S3 / Cloudinary

DevOps and Deployment

· Docker and Docker Compose

· GitHub Actions

· Vercel and Netlify

· New Relic and LogRocket
B. Features
User Features

· Expense tracking
· Interactive charts
· Budget management
· Transaction searching
· Financial goal tracking

· Works on all devices
· Multi-factor authentication support

· Automated alerts
· Monthly reports

· Real-time currency conversion

· PDF and Excel export functionality

Real-Time Capabilities

· Live transaction updates

· Instant budget alerts

· Dynamic dashboard refresh

· In-app notifications

C. Project Architecture

[image: image1.png]L (i) ML Model

Visualizations

+ Dashboard

« Transactions :i'::;
OLIIEE) « scikit-learn

« Admin Panel

Predictions

Database (MongoDB)

* Users
« Transactions
« Categories

« Budgets

Input Data

Fig. 1: Project Architecture diagram
1. Frontend
The frontend is built using React 18.2 with TypeScript, providing a strongly typed and component based architecture. Every interface module – from authentication to transaction management to analytic dashboards – is developed as a React component, allowing for a much more modular structure and providing reusability of components. This allows for a more cleaner code structure, reducing redundancy and making the UI easier to maintain and update.
Redux Toolkit and React Query manage global state and server-side data synchronization. Redux handles application-wide state such as authentication, user preferences, and UI settings, while React Query efficiently manages API calls, caching, background data refetching, and synchronization with the backend. This ensures the interface remains responsive and consistent with server data.

The UI is stylized by the use of Tailwind CSS and Material UI for a clean and readable view.
Data visualization on the frontend is handled by Chart.js, which displays charts generated by the machine learning (ML) layer, such as income vs. expenses, budget trends, and categorical breakdowns, onto the web page.

2. Backend

The backend is implemented using Node.js 18.x with Express.js and TypeScript, serving as the core processing layer of the application. It is responsible for business logic, user authentication, transaction management, administrative operations, reporting, and communication with both the database and external services.

Client requests from the frontend are routed through RESTful API endpoints before reaching the backend. Joi and express-validator screen through the incoming data to ensure malformed or malicious inputs do not make it through.

Authentication and authorization are handled using JSON Web Tokens (JWT) for token-based access and Passport.js for role-based access control. This ensures that only authorized users can access sensitive financial and administrative data.

File uploads like transaction receipts are handled using Multer and stored in Cloudinary, ensuring efficient file handling and CDN-based delivery.

3. Machine Learning Model

The ML model is built using Pandas, NumPy, and scikit-learn. It focuses on two main tasks: categorizing expenses and forecasting future spending.
The categorization model learns patterns from transaction data, such as the description or amount, to classify entries into categories like “Food,” “Transport,” or “Bills.” For example, transactions with words like “Uber” or “Taxi” are likely to fall under “Transport.” The model uses simple algorithms like decision trees or logistic regression for interpretability and faster prediction times.
The forecasting model analyzes users’ past transactions to estimate how much they are likely to spend in future months. This helps users plan budgets or identify overspending trends early.

Both models are trained offline and integrated into the backend through saved model files (.pkl format). When a user adds new transactions, the backend sends the data to the ML model, which returns predictions in real time. The model can also include an explainability function, giving short reasons for its decisions, such as “Predicted as Food because the amount matches past meal expenses.”
This setup allows the system to move beyond basic tracking and deliver intelligent, data-driven financial insights.
4. Database Layer

 The application uses MongoDB Atlas as its primary database for persistent storage. MongoDB, being an unstructured NoSQL database, allows for flexible storage of user profiles, transactions, budgets, categories, and audit logs without rigid schema constraints that a typical database management system might have.
Every transaction record contains information like the transaction date, the amount of money, the sender and receiver, the category of transaction, and a description of the transaction. This allows for efficient querying in the otherwise freeform structure of MongoDB.

Redis is used as a temporary memory layer to cache frequently accessed or computationally expensive data for a particular user, such as analytics dashboards and recent transactions. This is useful for improving the responsiveness and speed of the system when multiple people are using the application concurrently.

Cloud-based storage is handled by AWS S3, allowing for secure storage of files like receipt images and transaction records.

5. Data Flow Summary
The data flow across the system is as follows:

User Interaction:

The user performs actions through the frontend interface, such as logging in, adding a transaction, generating reports, or viewing analytics.

Request Transmission:

The frontend sends structured JSON requests to the backend APIs using secure HTTP communication, with authentication handled through JWT tokens.

Backend Processing:

The backend processes the request, applies business logic, and interacts with MongoDB for data storage or retrieval. Redis is checked first for cached data to optimize response time.

ML Model Integration:

If prediction or categorization is required, the backend passes the relevant transaction data to the ML model, which returns the predictions to the backend. The backend relays the predictions back to the frontend, where the UI updates dynamically using charts, tables, and dashboards to reflect the new information in real time.
V. Results
A. Test Cases

1. Login Validation
· Attempted to enter a value in the email section of the login page that isn’t an email address.
· A notification box alerts the user to enter an email address.
· Attemped to enter a value in the password section of the login page that isn’t a password.
· A notification box alerts the user that either the username or password is incorrect.
2. RESTful API endpoint security

· All API calls are carried out through buttons on the user interface, only allowing for preset data formats to reach the backend.

· Joi and express-validator inspect the incoming calls as an added layer of security to prevent malicious calls to the backend.

3. Transactional Validation

· Constraints are hard coded in the transactional fields to accept only a certain kind of data.

· Any attempts to type data of an invalid type will not register on the app, thus preventing accidental or malicious data inputs.
· For example, the app does not allow you to enter text information into the “Amount” field of the transaction, only numerical values.

· Empty fields will cause the app to prevent further progress with the transaction.

· All relevant fields must be filled for a transaction to be created.

· For example, the transaction will not proceed until an account has been specified during creation.

· A validation check ensures transactions cannot be created using dates in the future.

· For example, attempting to set the date a transaction occurred to a date in the future will not be allowed by the app.

· Values that are entered in an incorrect format will also fail to register on the app.

· For example, attempting to enter credit card expiry date information in a format other than (MM/YY) will result in a notification warning the user of the issue.
B. Validation and Testing

This section presents the testing methodology and verified test cases implemented in the FIN-APP Financial Management System. All test cases reported in this section are directly derived from the project’s automated test suite and correspond to executable test code.

A. Overview

The objective of testing was to validate the correctness, robustness, and reliability of all major system modules, including account management, transactions, analytics, and security.

Test File Location: tests/api/routes.test.ts
Total Test Code Size: 1,145 lines
Mock Infrastructure: tests/mocks.ts (129 lines)

B. Testing Framework and Configuration

1) Tools and Libraries

	Tool
	Purpose
	Version

	Vitest
	Test runner
	3.2.3

	@vitest/coverage-v8
	Code coverage
	3.2.3

	Hono Testing Client
	API testing
	Built-in

	Zod
	Schema validation
	3.23.8

2) Test Environment Configuration

// vitest.config.ts
environment: 'node'
setupFiles: ['./vitest.setup.ts']

coverage: {

 provider: 'v8',

 reporter: ['text', 'json', 'html']

}

C. Implemented Test Cases

1) Error Handling Tests

TC-ERR-001: Database Error Handling
Description: Validates graceful handling of database failures.
Expected Result: HTTP 500 with appropriate error message.
Status: Implemented.

it('should handle database errors gracefully', async () => {

 mocks.db.select.mockImplementation(() => {

 throw new Error('Database connection failed');

 });

 const res = await client.accounts.$get();

 expect(res.status).toBe(500);

});

TC-ERR-002: Missing Required Fields
Description: Validates input validation for required fields.
Expected Result: HTTP 400 with validation error.
Status: Implemented.

TC-ERR-003: Unauthorized Access
Description: Ensures restricted endpoints reject unauthenticated requests.
Expected Result: HTTP 401 (Unauthorized).
Status: Implemented.

2) Accounts API Tests

	Test ID
	Endpoint
	Description
	Status

	TC-ACC-001
	GET /accounts
	Retrieve all accounts
	Implemented

	TC-ACC-002
	GET /accounts/:id
	Retrieve account by ID
	Implemented

	TC-ACC-003
	GET /accounts/:id
	Account not found (404)
	Implemented

	TC-ACC-004
	POST /accounts
	Create new account
	Implemented

	TC-ACC-005
	PATCH /accounts/:id
	Update account
	Implemented

	TC-ACC-006
	DELETE /accounts/:id
	Delete account
	Implemented

	TC-ACC-007
	POST /accounts/bulk-delete
	Bulk delete
	Implemented

3) Categories API Tests

	Test ID
	Endpoint
	Description
	Status

	TC-CAT-001
	GET /categories
	Retrieve all categories
	Implemented

	TC-CAT-002
	POST /categories
	Create category
	Implemented

4) Transactions API Tests

	Test ID
	Endpoint
	Description
	Status

	TC-TXN-001
	GET /transactions
	Retrieve all transactions
	Implemented

	TC-TXN-002
	GET /transactions?from=&to=
	Query filtering
	Implemented

	TC-TXN-003
	POST /transactions
	Create transaction
	Implemented

	TC-TXN-004
	POST /transactions/bulk-create
	Bulk create
	Implemented

it('should create new transaction', async () => {

 const res = await client.transactions.$post({

 json: { amount: 100, payee: 'Test', date: '2024-01-01', accountId: 'test-id' },

 });

 expect(res.status).toBe(200);

});

5) Summary / Analytics API Tests

	Test ID
	Endpoint
	Description
	Status

	TC-SUM-001
	GET /summary
	Retrieve summary data
	Implemented

	TC-SUM-002
	GET /summary?from=&to=
	Filtered summary
	Implemented

6) Credit Cards API Tests

	Test ID
	Endpoint
	Description
	Status

	TC-CARD-001
	GET /cards
	Retrieve all cards
	Implemented

	TC-CARD-002
	GET /cards/:id
	Retrieve card by ID
	Implemented

	TC-CARD-003
	GET /cards/:id
	Card not found (404)
	Implemented

	TC-CARD-004
	POST /cards
	Create credit card
	Implemented

7) Synthetic / Testing Routes

	Test ID
	Endpoint
	Description
	Status

	TC-SYN-001
	POST /_synthetic/reset
	Database reset
	Implemented

	TC-SYN-002
	POST /_synthetic/new_session
	Session creation
	Implemented

	TC-SYN-003
	POST /_synthetic/log_event
	Event logging
	Implemented

	TC-SYN-004
	GET /_synthetic/logs
	Retrieve logs
	Implemented

	TC-SYN-005
	GET /_synthetic/logs
	Missing session validation
	Implemented

D. Test Coverage Summary

	Module
	Test Cases
	Approx. LOC
	Status

	Error Handling
	3
	~40
	Implemented

	Accounts API
	7
	~130
	Implemented

	Categories API
	2
	~40
	Implemented

	Transactions API
	4
	~120
	Implemented

	Summary / Analytics
	2
	~100
	Implemented

	Credit Cards API
	4
	~70
	Implemented

	Synthetic Routes
	5
	~100
	Implemented

	Total
	27
	~600
	All Implemented

E. Mock Infrastructure

The test suite employs comprehensive mocking to isolate components and ensure deterministic results:

· Database Mocks: tests/mocks.ts
· Authentication Mocks: Session and user authorization simulation

· Synthetic Logger Mocks: Database operation tracking

· Schema Validation Mocks: Zod-based request validation

F. Key Functional Aspects Verified

· CRUD operations across all entities

· Authentication and authorization enforcement

· Error handling (database failures, validation errors, 404s)

· Query-based filtering (date ranges, categories)

· Bulk operations (insert and delete)

· Event logging and session management

G. Test Execution

npm test # Run all tests
npm run test:watch # Watch mode
npm run test:coverage # Coverage report
{
 "scripts": {
 "test": "vitest",
 "test:watch": "vitest --watch",
 "test:coverage": "vitest run --coverage"
 }
}

H. Conclusion

A total of 27 automated test cases were executed, covering all core modules of the FIN-APP system. Each test is:

· Implemented: Present in the codebase

· Executable: Runnable using standard test commands

· Traceable: Mapped to file locations and line numbers

· Comprehensive: Validates business logic, data integrity, and security constraints

C. Screenshots

[image: image2.jpg]Sl

Take Control of Your Financial Future

Manage multiple accounts, track expenses with custom categories, and visualize your

financial data with interactive charts and dashboards.

Start Free Today

Everything You Need to Manage Your Money

an

Multi-Account Support

Connect and manage multiple bank accounts,

credit cards, and investment accounts in one
place.

Custom Categories Interactive Charts
Create personalized spending categories and Visualize your financial data with beautiful,
track your expenses exactly how you want. interactive charts and comprehensive dashboar i@

Fig. 2: Home page of the financial app

[image: image3.jpg]Signintoy ount to continue managing your

nt? Sign up

Fig. 3: Username validation

[image: image4.jpg]Sign in to your

Email

jdsfbewjdfsd@gmail.com

Password

Don't have an account? Sign up

@ invalid email or password

Fig. 4: Password validation

[image: image5.jpg]e FlN Overview Transactions Accounts Categories Credit Cards Al Forecasting Sign Out

Welcome Back, john doet

This is 1A e ort

All accounts Dec 08 - Jan 07, 2026

Transaction History

Filter payee

@ Date Ty Category T Payee Ty Amount 1 Account 1

O 2026-01-07 Credit Cards Amazon Everyday Rewards Account
O 2026-01-07 Credit Cards jgi 250.00 Platinum Rewards Account
(0 2026-01-06 Credit Cards Target Smart Rewards Account

O 2026-01-06 Credit Cards Pharmacy Travel Elite Account

Fig. 5: Transactions view
[image: image6.jpg]New transaction X

Create a new transaction.

Pick a date

Select an account

Category

travel

Payee

Add a payee

Amount

-$1,000
This will count as an expense
Notes

Optional notes

4

Create transaction

Fig. 6: Account transaction validation

[image: image7.jpg]New transaction

£ Pic

Account
January 2026

Categor

Payee

Add a

Amount

NaN
Notes

ptional notes

Create transaction

Fig. 7: Date transaction validation

[image: image8.jpg]New transaction

a new transaction,
5 Pick a date

Account

Add a payee

Amount

$1,222

This will count as

Notes

Create transaction

Fig. 8: Amount transaction validation

[image: image9.jpg]Transaction History & Imp

Filter payee
O Date 1l Category T Payee Tl Amount 1 Account 11

O 2026-01-07 Credit Cards Amazon @ Everyday Rewards Account
(J 2026-01-07 Credit Cards igi 25000 Platinum Rewards Account

(B} 2026-01-06 Credit Cards Target Smart Rewards Account

(8] 2026-01-06 Credit Cards Pharmacy Travel Elite Account
2026-01-06 Entertainment Amazon Investment Account
O 2026-01-06 Credit Cards Uber

Premium Travel Account

@] 2026-01-06 Credit Cards Pharmacy Gold Elite Account

@]

O 2026-01-06 Investments Client Payment 2133 Emergency Fund

Fig. 9: Transaction history

[image: image10.jpg]. FIN Overview Transactions Accounts Categories Credit Cards Al Forecasting Sign Out

Welcome Back, john doe %

This is your Financial Overview Report

All accounts Dec 08 - Jan 07, 2026

Categories Page

Filter name.

O Credit Cards
O Housing
O Transportation
@] Food & Dining

M) Utilities

Fig. 10: Categories view

[image: image11.jpg]. FIN Overview Transactions Accounts Categories CreditCards Al Forecasting Sign Out

Welcome Back, john doe

This is your Financial Overview Report

All accounts Dec 08 - Jan 07, 2026

Credit Cards

Card Name Card Name Card Name
Platinum Rewards Travel Elite Cash Back Plus

Card Number Card Number Card Number

eeee sooe o eeee seve sese 4350 s00e s0se soee 0177

Expires Type Expires Type Expires Type
12/24 Mastercard 12/24 Visa 1/25 Visa

+ Mock Transaction + Mock Transaction + Mock Transaction

Card Name ® E Card Name ® E Card Name e /5
Student Card Business Premium Everyday Rewards

Fig. 11: Credit card view

[image: image12.jpg]Add New Credit Card

Card Name

eeee

Card Number

Expiry Date cvv

24/12

Card Type

Mastercard

Associated Account

gfdc

Add Card

Invalid expiry date format (MM/YY)

Fig. 12: Expiry date credit card validation
[image: image13.jpg]‘¢ Al Financial Forecasting

Powered by Google Gemini Al * Predictions based on your spending history

?100, 27.13 predicted for next mon

Category Predictions

Credit Cards - Entertainment - Investments -
%664.23 0.72 %100,003.99

Predicted for next month 70% confidence Predicted for next month 30% confidence Predicted for next month 40% confidence
Rental Income - Housing - Food & Dining -
11.00 %1.60 2.35

Predicted for next month 50% confidence Predicted for next month 30% confidence Predicted for next month 30% confidence

Fig. 13: AI Forecasting view

[image: image14.jpg]A

Al-Powered Insights

Investment Dominance

An overwhelming 99.3% of your recorded spending (¥100,003.99) is concentrated in 'Investments'. While investing is crucial, this volume suggests either very
significant capital deployment in the analyzed period or potentially a one-off large investment. Predicting future 'spending' in this category at this magnitude with
high confidence is challenging without further historical context.

"

w

Unusual Categorization of Income Sources

Categories such as 'Salary', 'Rental Income', and 'Freelance' are listed within your 'spending data'. These are typically income streams. If these entries represent
actual income, they should be separated from expenses for a clearer financial overview. If they represent expenses related to earning this income, the amounts
are unusually low for business-related costs.

Review Data Accuracy and Categorization

To gain more accurate and actionable financial insights, it is highly recommended to meticulously review your data input and categorization. Clearly distinguish
between income and expenses, and ensure all significant financial activities from all sources are captured. This will enable more precise predictions and effective
budget management.

Clarify 'Credit Cards' Spending

The 'Credit Cards' category shows a high number of transactions (101) but a low average spend per transaction (26.58), totaling ¥664.23. Investigate whether this
represents credit card fees, interest, or if actual purchases made via credit card are being recorded under other categories. Understanding this will improve the
clarity of your expense tracking.

Extremely Low Daily Living Expenses

Spending in essential categories like Food & Dining (¥2.35), Housing (%1.60), Utilities (32.12), and Transportation (20.97) is exceptionally low. This pattern suggests
several possibilities: either these expenses are covered by other financial accounts not included in this dataset, the data provided is incomplete, or the individual
maintains an extraordinarily frugal lifestyle.

Fig. 14: AI powered insights

[image: image15.jpg]10 Dec 13Dec 16Dec 19 Dec 22 Dec 25Dec 28 Dec 31Dec 03Jan 07 Jan

Spending Trend

vs -¥4,912.55 last month

-¥561.30

+89% from last period

Monthly Spending

6000

4500
3000

1500

Jan 2026

High-Value...

Highest single transaction

¥500.00

0% from last period

Dec 2025

@ Other %8.05

Frequent... — Monthly...
Most visited merchant = Expected next month
%0.00 -¥3,010.62
0% from last period 0% from last period

Top Merchants

191 03%
"* Uber 19%
Public Transport 4% Ve
® igj 63% NSHIKE3% Coffee Shop 9%

® Public Transport 4%
® Netflix 5%
@ Coffee Shop 9%

® Uber 19%

Fig. 15: Visualizations view

[image: image16.jpg]® Uber 19%

Daily Spending (Last 30 Days)

6007

450
300

150

Dec 08 Dec 10 Dec 12 Dec 14 Dec 16 Dec 18 Dec 20 Dec 22 Dec 24 Dec 26 Dec 28 Dec 30 Jan 01 Jan 03 Jan05 Jan 07

&

Fig. 16: Daily spending over the last 30 days
VI.
Research
1. AI-Driven Financial Insights for Personal Budget Planning
Harshitha G. M.; Puneeth Kumar; Rakshitha M — IEEE Conference Paper, 2025
2. GenAI-Powered Personal Finance Consultant
M. Suganya; R. Jayaraj; S. Ganesh Kumar; Syed Ismail — Conference Paper, 2024
3. AI-Based Personal Finance Management System
— IJERT Journal Paper, 2025
4. Design and Implementation of Real-Time Expense Tracker Using ML
Manasa S.; S. K. Shivashankar; P. Prasanna; H. P. Mohan Kumar — SSRN Conference/Working Paper, 2024
5. Artificial Intelligence in Personal Finance Management: Opportunities and Challenges
— IOSR Journal Paper, 2024
6. AI in Financial Decision-Making: Risks and Opportunities
Aaryan Gupta; Mayank Puri Goswami; Mayank Keshan; Varun Tiwari — Conference Paper, 2024
7. Machine Learning for Financial Risk Management: A Survey
Akib Mashrur; Wei Luo; Nayyar A. Zaidi; Antonio Robles-Kelly — IEEE Access (Survey Journal Paper), 2020
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

